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Equilibrium and nonequilibrium relaxation behaviors of two-dimensional superconducting arrays are inves-
tigated via numerical simulations at low temperatures in the presence of incommensurate transverse magnetic
fields, with frustration parameter f = �3−�5� /2. We find that the nonequilibrium relaxation, beginning with
random initial states quenched to low temperatures, exhibits a three-stage relaxation of chirality autocorrela-
tions. At the early stage, the relaxation is found to be described by the von Schweidler form. Then it exhibits
power-law behavior in the intermediate-time scale and faster decay in the long-time limit, which together can
be fitted to the Ogielski form; for longer waiting times, this crosses over to a stretched exponential form. We
argue that the power-law behavior in the intermediate-time scale may be understood as a consequence of the
coarsening behavior, leading to the local vortex order corresponding to f =2 /5 ground-state configurations.
High mobility of the vortices in the domain boundaries, generating slow wandering motion of the domain
walls, may provide mechanism of dynamic heterogeneity and account for the long-time stretched exponential
relaxation behavior. It is expected that such meandering fluctuations of the low-temperature structure give rise
to finite resistivity at those low temperatures; this appears consistent with the zero-temperature resistive
transition in the limit of irrational frustration.
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I. INTRODUCTION

Relaxation properties of systems with a great number of
metastable states have attracted much attention in the recent
decades.1–6 These systems are usually characterized by the
existence of both disorder and frustration. A well-known sys-
tem is the Ising spin-glass model,1 which displays nonexpo-
nential relaxation at low temperatures.2,3 Interesting aging
phenomena4 were also observed in this system.5 The Cou-
lomb glass model, which is another interesting disordered
system, has recently been shown to exhibit relaxation of the
stretched exponential form.6 Such nonexponential relaxation
was also reported in frustrated systems without disorder and
its relation with the percolation transition was discussed.7

In a superconducting array, frustration can be induced in a
controllable way by applying an external magnetic field. It
has crucial effects on thermodynamics of the system and
results in a variety of equilibrium properties.8,9 Such remark-
able diversity in the equilibrium properties naturally leads to
expectations that a variety of interesting dynamic behaviors
is also present, particularly in relaxation toward equilibrium.

An interesting limiting situation arises in the presence of
irrational frustration, the most typical case of which is pro-
vided by the frustration parameter f =1−g with the golden
number g���5−1� /2. The system was first suggested to ex-
hibit a spin-glasslike phase at low temperatures due to self-
generated disorder.10 Subsequently, it was argued to display
novel finite-size effects11 that the size-dependent transition
temperature decreases monotonically with the system size,
resulting in the absence of a finite-temperature transition.12

Simulation results for the current-voltage characteristics sup-
ported the zero-temperature transition,13 while experimental

results were interpreted to exhibit finite-temperature
transitions.14,15 Recent Monte Carlo simulations, investigat-
ing the vortex configuration at low temperatures in the sys-
tem with f given by rational approximants to 1−g, indicate
the existence of a low-temperature phase where the helicity
modulus takes a finite value along one direction and vanishes
along the other down to very low temperatures.16–18 From
dynamical perspectives, due to the existence of many meta-
stable states that are almost degenerate with one another
�which is attributable to the incommensurate magnetic field�,
one may expect characteristic slow relaxation in the array
with irrational frustration. Dynamic simulations of this sys-
tem, based on simple Langevin dynamics, indeed disclosed a
crossover temperature below which strongly nonexponential
relaxation emerges, exhibiting some analogy to the behavior
of supercooled liquids.19

In this paper we investigate the relaxation behavior of the
superconducting array with irrational frustration in both
equilibrium and nonequilibrium situations, employing the
resistively-shunted-junction �RSJ� dynamics in the over-
damped limit �i.e., junction capcitances are neglected�. Note
that the present RSJ dynamics can, in principle, be realized
in real junction array experiments; this is in contrast to the
Langevin dynamics employed in existing simulations, which
assumes hypothetic dissipation between the superconducting
islands and the ground.

At equilibrium, we observe that chirality autocorrelations
are characterized by stretched exponential relaxation �with a
temperature-dependent stretching exponent� in a wide range
of intermediate and low temperatures. The relaxation time
exhibits non-Arrhenius behavior with the Vogel–Tammann–
Fulcher type of temperature dependence.
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On the other hand, beginning with random initial states
quenched to low temperatures �T�0.14�, the dynamics ex-
hibits slow aging behavior, not reaching the equilibrium re-
laxation within our computing time. It is observed that, for a
short time �approximately up to time t�10–20 depending on
the waiting time and temperature�, relaxation of the chirality
autocorrelation function exhibits the von Schweidler
behavior.20 After a short time, chirality autocorrelations for
short waiting times relax according to the so-called Ogielski
form with temperature-dependent exponents. For longer
waiting times, this behavior slowly changes into the
stretched exponential form with a temperature-dependent
stretching exponent. The Ogielski form of the nonequilib-
rium relaxation is characterized by power-law behavior in
the intermediate-time scale and faster decay in the long-time
region. The emergence of power-law behavior in the
intermediate-time scale suggests the presence of a sort of
coarsening dynamics with dynamic scaling, which is sup-
ported by the evolution of vortex patterns.

This is also consistent with the vortex configurations in
low-energy states obtained from a global optimization algo-
rithm such as conformational space annealing �CSA�.21,22

Those vortex configurations obtained from CSA exhibit in-
teresting features: There exist approximately parallel do-
mains of local vortex order corresponding to the staircase
ground state of f =2 /5.23 Those domains are separated by
domain-wall regions, consisting of characteristic local ar-
rangements of four consecutive vacancies along one �hori-
zontal or vertical� direction, thereby, neighboring domains
are parallel-shifted by two horizontal �or vertical� lattice
units. Reminiscent of the smectic order in a liquid crystal,
such configurations may be described as smectic �liquid-
crystalline� arrangements of diagonal chains of vortices.
Similar features of the vortex lattice were also reported for
the case of frustration f =13 /34 and 21/55, which are rational
approximants to the irrational value f =1−g.18

Evolution of the vortex pattern in general exhibits growth
of local vortex order with time toward the low-temperature
anisotropic state described above. This power-law behavior
of coarsening is expected to be interrupted by long-time fluc-
tuations of domain walls, limiting the maximum local do-
main size to around 12 lattice units on average. In the long-
time limit, vortex motions occur predominantly in the
domain-wall region through transfer of vortices between
neighboring diagonal vortex chains, which correspond also
to the motion of four consecutive vacancies. Accordingly, the
higher mobility of the vortices located in domain-wall re-
gions can naturally explain dynamic heterogeneity in the sys-
tem, leading also to the stretched exponential relaxation.

As for the resistive transition, one can argue that, as long
as the domain-wall defects keep fluctuating with unbounded
displacement, the system would remain resistive �i.e., exhib-
iting finite resistance� even at low temperatures below the
transition to the anisotropic phase, since there always exists a
direction along which the helicity modulus vanishes. Those
domain-wall defects are likely to freeze at a much lower
temperature which vanishes in the limit of irrational frustra-
tion; thus, concluded is a zero-temperature resistive transi-
tion in the system with irrational frustration. Note, however,
that this argument applies to a pure system with no quenched

disorder. In a real Josephson-junction array, disorder is inevi-
table in the distribution of critical currents of individual junc-
tions, which leads to pinning of domain-wall defects at finite
temperatures. This may explain the recent experimental re-
sults reporting a finite-temperature resistive transition near
incommensurability of the magnetic frustration.15

This paper is organized as follows: In Sec. II we introduce
the equations of motion for the RSJ dynamics of the system
in the fluctuating twist boundary conditions. Section III pre-
sents the results of simulations performed on the equations of
motion. Both equilibrium and nonequilibrium relaxation be-
haviors of chirality autocorrelations are examined and coars-
ening, interrupted by fluctuating domain-wall defects, is ad-
dressed. Finally, a summary is given in Sec. IV.

II. EQUATIONS OF MOTION

We begin with the set of equations of motion for the
phases ��i� of the superconducting order parameters in a
L�L square array. In the RSJ model under the fluctuating
twist boundary conditions,24 they read:

�
j

�	d�̃ij

dt
+ sin��̃ij − rij · �� + �ij
 = 0, �1�

where we have employed the abbreviations �̃ij ��i−� j
−Aij and rij �ri−r j, and the primed summation runs over the
nearest neighbors of grain i. The position of grain i is repre-
sented by ri= �xi ,yi� with the lattice constant set equal to
unity while the gauge field Aij is given by the line integral of
the vector potential A:

Aij �
2�

�0
�

ri

rj

A · dl , �2�

with the flux quantum �0�hc /2e. The frustration parameter
f , which measures the number of flux quanta per plaquette, is
given by the directional sum of the gauge field Aij around a
plaquette:

f �
1

2�
�
P

Aij . �3�

In Eq. �1� the energy and the time have been expressed in
units of �Ic /2e and � /2eRIc, respectively, with single-
junction critical current Ic and shunt resistance R. The ther-
mal noise current �ij is assumed to be white, satisfying

��ij�t + ���kl�t�
 = 2kBT	����	ik	 jl − 	il	 jk� �4�

at temperature T. Henceforth we set the Boltzmann constant
kB�1, thus measuring the temperature in units of �Ic /2ekB.
The dynamics of the twist variables 
��
x ,
y� is governed
by

d
a

dt
=

1

L2 �
�ij
a

sin��̃ij − 
a� + �a, �5�

where ��ij
a
denotes the summation over all nearest-

neighboring pairs in the a direction �a=x ,y� and �a satisfies

��a�t + ���b�t�
 =
2T

L2 	ab	��� . �6�
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To study the relaxation of the system, we let the system
evolve from some random initial configurations quenched to
given temperatures and measure the chirality autocorrelation
function:

Cq�t + tw,tw� �
1

L2f�1 − f��R �qR�t + tw�qR�tw�
 , �7�

with the waiting time tw. Here the chirality is defined to be

qR�t� �
1

2�
�
P

��̃ij�t� − rij · ��t�� , �8�

where �P denotes the directional plaquette summation of
links around dual lattice site R and the phase difference
�̃ij�t�−rij ·��t� is defined modulo 2� in the range �−� ,��.

In numerical simulations, we have integrated directly the
equations of motion �1� and �5� via the modified Euler
method with time step 
t=0.05. The time step has been var-
ied, only to give no appreciable difference. We have consid-
ered mostly systems of linear size L=55 and 89, taking av-
erages typically over 100–600 ensembles with random initial
states. The size has been chosen as members of the Fibonacci
sequence, thus, to minimize the boundary effects due to the
irrational frustration f =1−g. For comparison, we have also
considered close rational approximants f =21 /55 and 34/89
to find no qualitative difference in relaxation dynamics.

III. SIMULATION RESULTS

We first consider the equilibrium relaxation behavior of
the system, obtained in the following way: Dynamic simula-
tions are performed with random initial states and then the
autocorrelation function in Eq. �7� is computed for different
values of the waiting time. When the waiting time is suffi-
ciently large �and the temperature is not too low�, the auto-
correlation function no longer depends on the waiting time,
collapsing onto a single relaxation function. This collapsed
relaxation function is taken to be the equilibrium relaxation
function Ceq�t�. In this way, equilibration of the system is
achieved here, down to temperature T=0.14. In Fig. 1�a�, the
behavior of Ceq�t� is exhibited for several values of the tem-
perature T. Excluding the earliest time regime, one may fit
this relaxation behavior to a stretched exponential form:
Ceq�t��A exp�−�t /����. Figure 1�b� shows that the stretch-
ing exponent � decreases as the temperature is lowered,
reaching the value ��0.5 at T=0.14. On the other hand, Fig.
1�c�, plotting the relaxation time � versus the inverse tem-
perature T−1, discloses the Vogel–Tamman–Fulcher behavior:

��T� = �0 exp	D
T0

T − T0

 , �9�

with the fragility parameter D=10.2 and other parameters
�0=3.65 and T0=0.06. �Here, T0 is merely a fitting param-
eter, perhaps not associated with a transition.� These results
are consistent with those from Langevin dynamics.19

As the temperature is further lowered, especially below
0.14, the system, starting from a random initial state, does
not relax to the equilibrium within the available computing

time. Instead of pursuing equilibrium relaxation at these low
temperatures, we probe nonequilibrium relaxation for vari-
ous waiting times by letting the system evolve from random
initial states. It is found that the resulting relaxation of chiral-
ity autocorrelations proceeds in three stages. Figure 2�a�
shows the time evolution of Cq�t+ tw , tw� for the waiting time
tw=30,000 at temperatures T=0.15, 0.13, and 0.10. For the
same data, plotted in Fig. 2�b� is 1−Cq�t+ tw , tw� versus time
t, where one can see that, for almost three decades beginning
from the earliest time, the relaxation fits nicely to the von
Schweidler form 1− �t /�0�b with b�1 /2. In Fig. 2�c� we
show 1−Cq�t+ tw , tw� versus time t at temperature T=0.13 for
various waiting times. It is observed that the von Schweidler
behavior with b�1 /2 is rather robust, hardly depending
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FIG. 1. �a� Relaxation of the chirality autocorrelation function
�at equilibrium� Ceq�t� at various temperatures T in the irrationally
frustrated array of linear size L=89. Stretched exponential fits are
also plotted. �b� Stretching exponent versus the temperature. The
dotted line is merely a guide to the eye. �c� Relaxation time versus
the inverse temperature. The dashed line represents the Vogel–
Tammann–Fulcher fit with T0=0.06 and �0=3.65. The inset shows
the result in a different scale.
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on the waiting time or the target temperature. This is in con-
trast with the results of Langevin simulations, where the
value of b tends to deviate from 1/2, getting smaller at low
temperatures.19 We presume that this discrepancy arises from
the difference in vortex dynamics �and diffusion� at short
times between RSJ dynamics and simple Langevin dynam-
ics.

We now turn to the relaxation behavior at intermediate
and late stages for various waiting times and temperatures.
Figure 3 shows the nonequilibrium relaxation of the chirality
autocorrelation function for null waiting time at temperatures
T=0.15, 0.14, 0.13, and 0.12. It is observed that the relax-
ation exhibits power-law behavior in the intermediate-time
regime, followed by faster decay in the long-time regime.
Here it is tempting to fit the relaxation of the autocorrelation
function to the Ogielski form:

Cq�t� � A1t−� exp�− �t/�1��� , �10�

with the exponents � and � given in Fig. 4 and Table I. Note
that � depends substantially on the temperature, varying in
the range of 0.19–0.35 at temperatures between 0.08 and
0.15.

Also shown in Fig. 5 is the nonequilibrium relaxation of
the chirality autocorrelation function for various waiting
times, at temperatures T=0.14, 0.13, and 0.12. For longer
waiting times �tw
100.0�, this behavior crosses over to the
stretched exponential form Cq�t��A2 exp�−�t /�2���. Emer-
gence of the power-law behavior of the nonequilibrium re-
laxation at intermediate times strongly suggests that there
exist some coarsening processes in the system. Figure 6 ex-
hibits snapshots of the vortex configuration at temperature
T=0.13, taken at several time instants; one can recognize
slow growth of local order corresponding to f =2 /5 vortex
patterns, with diagonal chain structures. Since the frustration
of the system is given by f =1−g, which is slightly smaller
than 2/5, these locally ordered domains of f =2 /5 patterns
may not grow to span the whole system. Instead, there
should exist finite length �and also time� scales for the
growth of these local domains, beyond which the growth is
interrupted by domain-wall regions of lower vortex density,
so that the net vortex density of the whole system becomes
equal to 1−g.

In order to understand the vortex configuration attained in
the long-time limit at low temperatures, we investigate the
configuration of low-energy states by means of the efficient
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FIG. 2. �a� Relaxation of the chirality autocorrelation function
Cq�t+ tw , tw� with time t in the early-time regime at temperatures
T=0.10, 0.13, and 0.15 for L=89. The waiting time is chosen to be
tw=30 000. �b� The log-log plot of 1−Cq�t+ tw , tw� versus t for the
same data. For almost three decades in the early-time regime, the
relaxation behavior is observed to follow 1−Cq�t+ tw , tw�� t1/2 at all
the three temperatures, as indicated by the dot-dashed line. �c� The
log-log plot of 1−Cq�t+ tw , tw� versus t at temperature T=0.13 for
three different waiting times tw=1.0, 100, and 30 000. It is shown
that the early-time behavior does not depend qualitatively on the
waiting time.
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0.12. While in the intermediate-time regime, the nonequilibrium
relaxation function exhibits features of power-law behavior; this
behavior is interrupted by faster decay in the long-time regime,
which together can be fitted to the Ogielski form, as shown by the
dot-dashed lines.
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optimization algorithm, CSA.21 Snapshots of typical vortex
configurations obtained via CSA are shown in Fig. 7, where
we observe domains of locally ordered vortex patterns cor-
responding to the staircase ground state of the system with
frustration �or vortex density� f =2 /5. These domains of typi-
cal width 9–12 lattice spacings are separated by domain-wall
�line defect� regions that consist of characteristic local ar-
rangements of four neighboring vacancies �see bar-shaped
regions, each with four consecutive empty plaquettes�; there,
the vortex density is lower than the locally ordered regions
�of local vortex density 2/5� in such a way that the net vortex
density of the whole system is precisely equal to 1−g �which

is less than 2/5�. This configurations may also be described
as a liquid-crystal-type arrangement of diagonal chains of
vortices �of length 9–12�, with the neighboring chains of
vortices shifted in the diagonal direction by about half the
length of the chains. Similar configurations were observed in
the case of rational approximants to 1−g.18

In the long-time limit, we expect that the coarsening dy-
namics will lead eventually to the locally ordered configura-
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FIG. 4. Exponents �a� � and �b� � versus temperature T in the fit
of the nonequilibrium relaxation for tw=0 to the Ogielski form.

TABLE I. Exponents � and � depending on the temperature T.
Note that � is not shown for the cases of T=0.08 and 0.09. At these
low temperatures, relaxation is too slow to observe clearly the late-
time stretched exponential part within the computational time win-
dow, making it formidable to estimate �.
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0.11 0.264�10� 0.80�3�
0.12 0.300�15� 0.67�3�
0.13 0.300�13� 0.54�2�
0.14 0.350�10� 0.83�4�
0.15 0.350�10� 0.83�4�
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FIG. 5. Aging relaxation of the chirality autocorrelation function
Cq�t+ tw , tw� for various values of the waiting time tw=0, 1, 3, 10,
30, 100, 300, 1000, 3000, 10 000, and 30 000 �from left to right�,
starting from random initial states, at temperatures T= �a� 0.14, �b�
0.13, and �c� 0.12. Power-law behavior t−� in the intermediate-time
regime is manifested by dotted lines with the exponents �= �a� 0.35,
�b� 0.33, and �c� 0.31. As the waiting time grows, the relaxation
develops simple stretched exponential behavior.
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tion with domain walls, shown in Fig. 7. Within a locally
ordered domain, vortices are almost rigid and resist moving.
In contrast, those vortices at ends of the chains are easily put
in motion, jumping into the bar-shaped vacancies in domain-
wall regions and thus joining another vortex chain. This in
turn gives rise to domain-wall fluctuations �or equivalently,
fluctuations in the length of the vortex chains�, which would
lead slowly but ultimately to the complete restructuring of
the local vortex configuration. It is thus expected that dy-
namic heterogeneity naturally emerges from the existence of
distinctly mobile vortices in the domain-wall regions.25

We believe that such domain-wall fluctuations and re-
structuring of the local vortex configuration can explain the
absence of freezing of the relaxation at low temperatures.
Namely, the low-temperature state is presumably of a liquid
crystalline type: Even though there exists orientational order
in the chainlike arrangement of vortices, those diagonal
chains can flow �like a liquid� due to the transfer of vortices
between neighboring chains, corresponding to the fluctuating
motion of the bar-shaped vacancies and resulting in finite
resistivity. At a much lower temperature one may expect
complete freezing of the domain walls to occur. The freezing
temperature should depend on the commensurability of the
distribution of the vacancy defects and the underlying back-
ground vortex lattice; this is directly related to the rationality

of f = p /q �where p and q are relatively prime integers� and
the freezing temperature is expected to vanish in the irratio-
nal limit �q→��.

It is of some interest to note the similarity to the behavior
found in the lattice Coulomb gas with charge density near the
golden number.26 Even though the detailed ordering pattern
is different, it was found numerically that there exist two-
step transitions in the lattice Coulomb gas with 1 /3� f
�2 /5, where the intermediate phase corresponds to aniso-
tropic striped charge ordering together with mobile charges
within partially filled channels. There, the lower transition
corresponds to the complete freezing of charges within par-
tially filled diagonal channels, which occurs at temperatures
sensitively dependent on the rationality of f due to the com-
mensurability effects. In this study our system is the
Josephson-junction array in the limit of irrational frustration,
and we thus expect that the true vortex freezing would occur
at zero temperature.

As long as the domain-wall defects fluctuate with un-
bounded displacement, the system should remain resistive,
exhibiting finite resistance. These domain-wall defects are
expected to freeze at much lower temperature of the order
1 /q for f = p /q; this leads to the zero-temperature resistive
transition in the limit of irrational frustration. Note that this
argument applies for pure systems with no quenched disor-
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FIG. 6. Snapshots of the vor-
tex configuration in the system of
size L=55, beginning from a ran-
dom initial state and quenched to
temperature T=0.130, at times t
= �a� 0.0, �b� 8.0, �c� 128, and �d�
2048.

JEON et al. PHYSICAL REVIEW B 78, 024523 �2008�

024523-6



der. In the case of real Josephson-junction arrays, some type
of disorder, e.g., in the distribution of the critical currents of
individual junctions, is unavoidable. Therefore, pinning of
the domain-wall defects can easily occur at finite tempera-
tures, having resistance vanish. This may explain the recent
experiment reporting a finite-temperature resistive transition

near incommensurability of the magnetic frustration, where
disorder in the critical currents of individual junctions was
noted to be up to 15%.15

IV. SUMMARY

We have studied the relaxation behavior of the chirality
autocorrelation function in two-dimensional superconducting
arrays under irrational frustration at intermediate and low
temperatures. Both equilibrium and nonequilibrium relax-
ations have been investigated via numerical simulations of
RSJ dynamics. Equilibrium relaxation dynamics reveals
characteristic features of the stretched exponential form with
the Vogel–Tamman–Fulcher dependence of the relaxation
time.

Nonequilibrium relaxation at low temperatures, beginning
with random initial states, exhibits interesting waiting-time
dependence: For short waiting times, the relaxation follows a
power-law behavior in the intermediate-time regime and
faster decay in the long-time regime, characterized together
by the Ogielski form with temperature dependent exponents.
For longer waiting times, this gradually crosses over to a
stretched exponential form. Further, in all cases of short and
long waiting times, the relaxation at early-time stage fits
nicely to the von Schweidler form with exponent of about
1/2.

It has been argued that the power-law behavior originates
from coarsening dynamics up to a certain length scale, with
the local vortex order corresponding to the ground state of
f =2 /5 found to be consistent with the vortex configurations
of low-energy states. This coarsening, however, is inter-
rupted by the presence of domain-wall defects. Such chain-
like domain-wall regions are expected to provide possible
mechanism of dynamic heterogeneity and stretched exponen-
tial relaxation. Since the RSJ dynamics adopted in this study
can be realized experimentally, it would be of interest to
carry out experiment and compare the results.
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